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1. Introduction

A way to categorize the differential quadrature is based on the selection of trial functions to
determine the weighting coefficients. So far, various trial functions have been used to determine the
weighting coefficients, among which the Lagrange interpolation functions are widely used for its
simplicity and explicitness [1,2]. Although it is well known that Lagrange interpolation functions
are limited by the number of interpolation points and severe oscillation may take place if the order
is large, the use of the Gausss–Lobatto–Chebyshev points [1] can accelerate the convergence rate of
the differential quadrature method in majority cases and accordingly the worsening of the solution
is forestalled. But the use of Gausss–Lobatto–Chebyshev points is not a panacea; this might be
partially the reason behind the development of harmonic differential quadrature (HDQ) [3] and the
spline-based differential quadrature [4] in which much more grid points can be used.
The use of spline functions to determine the weighting coefficients in the differential quadrature

method was actually initiated by Kashef and Bellman [5]. In their work, the weighting coefficients
were determined using cubic cardinal B-spline functions, but they did not elaborate on the approach
and no explicit formulae for the weighting coefficients were given. In this note, a differential
quadrature method based on the sextic B-spline functions is developed and explicit formulae to
evaluate the weighting coefficients are presented. The non-linear free vibrations of beams with various
boundary conditions are studied to validate the new development. The non-linear free vibrations of
beams with immovable ends have been tackled using a variety of methods, such as the continuum
approach [6–9] and finite element method [10–13]. Feng and Bert also investigated the non-linear
vibrations of beams using the conventional DQM [14]. In this note, the same assumptions [14] are
made for simply supported beams and the governing equation is solved using the newly developed
differential quadrature method. The non-linear vibration analysis of beams with other boundary
conditions is also conducted despite the complexity resulting from the change of shape mode of beam
with vibration amplitude [7,12,13]. The comparison of computed results with those of other methods
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shows that the differential quadrature method based on the sextic B-spline functions is reliable and
effective. The present work also demonstrates the equal usefulness of even-order spline functions.

2. Spline-based differential quadrature

2.1. Cardinal sextic B-spline interpolation

The differential quadrature method based on odd-order B-splines has been elaborated in
Ref. [4]. The one major motivation of the development of differential quadrature using the sextic
B-spline is that the convergence rate of the differential quadrature method based on the quintic
B-spline has been found to be less satisfactory in the case of vibration analysis of Bernoulli–Euler
beams. First of all, a set of uniformly spaced knots is selected in a normalized interval [0,1], i.e.,

x0 ¼ 0; xN ¼ 1; xjþ1 � xj ¼ h; j ¼ 0; 1; 2;y;N � 1: ð1Þ

To construct a global interpolation function over the interval, usually extra knots outside the
interval ½x0;xN � are needed to meet the end condition requirements. A typical spline interpolation
over the given interval using the sextic B-spline can be expressed as

s6ðxÞ ¼
XNþ3

j¼�3

FjðxÞyj; FjðxÞ ¼ F0ðx � jhÞ: ð2Þ

In order to meet the required interpolation condition, the interpolation functions FjðxÞ should
satisfy the cardinal condition at every knot, i.e.,

FjðxiÞ ¼ dij ¼
1; i ¼ j;

0; otherwise:

(

i; j ¼ �3;�2;�1; 0; 1;y;N � 1;N;N þ 1;N þ 2;N þ 3; ð3Þ

where FjðxÞ are usually given in terms of a combination of translated and scaled spline function
j6: To acquire the cardinal spline interpolation function FjðxÞ; the following four auxiliary spline
interpolation functions [15] are constructed first:

c6ðxÞ ¼
XNþ3

j¼�3

yjj6ðx � xjÞ; ð4aÞ

c6ðxÞ
/1=6S ¼

XNþ3

j¼�3

yjj
/1=6S
6 ðx � xjÞ; ð4bÞ

c6ðxÞ
/1=3S ¼

XNþ3

j¼�3

yjj
/1=3S
6 ðx � xjÞ; ð4cÞ

c6ðxÞ
/1=2S ¼

XNþ3

j¼�3

yjj
/1=2S
6 ðx � xjÞ; ð4dÞ
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where

j/1=6S
6 ðxÞ � j6 x þ

h

6

� �
þ j6 x �

h

6

� �
; ð5aÞ

j/1=3S
6 ðxÞ � j6 x þ

h

3

� �
þ j6 x �

h

3

� �
; ð5bÞ

j/1=2S
6 ðxÞ � j6 x þ

h

2

� �
þ j6 x �

h

2

� �
: ð5cÞ

j6 is the normalized sextic B-spline function [16].
With the local non-zero property of the spline function j6ðxÞ; all the terms but the one

containing yj on the right sides of Eqs. (4) can be eliminated. Thus, the cardinal spline
interpolation function is obtained as

s6ðxÞ ¼
76946

15
c6ðxÞ �

152469

40
c/1=6S
6 ðxÞ þ 1485c/1=3S

6 ðxÞ �
28517

120
c/1=2S
6 ðxÞ; s6ðxÞAC5: ð6Þ

Hence,

FjðxÞ ¼
76946

15
j6ðx � xjÞ �

152469

40
j/1=6S
6 ðx � xjÞ

þ 1485j/1=3S
6 ðx � xjÞ �

28517

120
j/1=2S
6 ðx � xjÞ: ð7Þ

Since the extra knots outside the interval are often cumbersome to handle, non-integral knots
within the interval are introduced instead in this note. Namely, x1=6 ¼ h=6; x1=3 ¼ h=3; x1=2 ¼ h=2
and xN�1=2 ¼ ðN � 1=2Þh; xN�1=3 ¼ ðN � 1=3Þh; xN�1=6 ¼ ðN � 1=6Þh are added in the vicinity of
the two ends of the interval. Through some simple mathematic manipulations, the cardinal sextic
spline interpolation function can be re-arranged into the following form that is free of extra
outside knots:

s6ðxÞ ¼
XN

j¼0

OjðxÞyj; OjðxiÞ ¼ dij ¼
1; i ¼ j;

0; otherwise;

(

i; j ¼ 0; 1=6; 1=3; 1=2; 1; 2;y;N � 2;N � 1;N � 1=2;N � 1=3;N � 1=6;N: ð8Þ

2.2. Weighting coefficients

All weighting coefficients are given in explicit forms:

C
ðnÞ
ij ¼ OðnÞ

j ðxiÞ; n ¼ 1;y; 6

i; j ¼ 0; 1=6; 1=3; 1=2; 1; 2;y;N � 2;N � 1;N � 1=2;N � 1=3;N � 1=6;N: ð9Þ

The localized non-zero nature of splines results in banded weighting coefficient matrices for
derivatives. As reported in Ref. [4], this nature enables the differential quadrature to tackle
problems with local discontinuity.
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3. Non-linear vibrations of beams

A Bernoulli–Euler beam oscillating with large amplitude on immovable ends is considered here.
The governing equation for non-linear vibrations of beams can be described as [13]

EI
@4w

@x4
� N

@2w

@x2
þ m

@2w

@t2
¼ 0; ð10Þ

where w and m represent the deflection and the mass density per unit length. Assuming that the
ends are axially immovable, i.e., uð0; tÞ ¼ uðL; tÞ ¼ 0; it is evident that the axial force N is
independent of x and thus depends only on time [13],

Nðx; tÞ ¼ EA
@u

@x
þ
1

2

@w

@x

� �2
" #

¼ NðtÞ ¼
EA

2L

Z L

0

@w

@x

� �2

dx: ð11Þ

For a simply supported beam, it is reasonable to assume that [14]

wðx; tÞ ¼ avðxÞ cosot: ð12Þ

The governing equation for simply supported beams can be developed using the Ritz–Galerkin
technique [18], i.e.,

EI
d4v

dx4
�

3

4

EAa2

2L

Z L

0

dv

dx

� �2

dx

" #
d2v

dx2
� o2mv ¼ 0: ð13Þ

Its dimensionless form is

d4v

dx4
�

3

4

a2

2r2

Z 1

0

dv

dx

� �2

dx

" #
d2v

dx2
� ðo	Þ2mv ¼ 0; ð14Þ

where

x ¼
x

L
; ðo	Þ2 ¼ o2 mL4

EI
; r2 ¼

I

A
: ð15Þ

For a simply supported beam, the boundary conditions can be written as

vð0Þ ¼
d2v

dx2
ð0Þ ¼ vð1Þ ¼

d2v

dx2
ð1Þ ¼ 0: ð16Þ

As noted by some researchers [7,12,13], within the framework of the moderately large bending
theory, the non-linear vibration of simply supported beams would admit a variable-separable
solution, but the beams with clamped ends would not. For beams with clamped end, it is usually
assumed [13] that a point of maximum amplitude exists during the vibration and that this is also
the point of reversal of motion of every point of the beam. The properties of the eigenvector and
time function at the point are chosen as in Ref. [13]. Assume that at the point where maximum
amplitude is reached, the configuration of the beam is represented by %w and there exists [13]

@2 %w

@t2
¼ �o2

%w;
@ %w

@t
¼ 0: ð17Þ
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Substituting the above expression into governing equation (10) results in the differential equation
for non-linear vibrations of beams with clamped ends

d4 %w

dx4
�

a2

2r2

Z 1

0

d %w

dx

� �2

dx

" #
d2 %w

dx2
� ðo	Þ2m %w ¼ 0; ð18Þ

where x; ðo	Þ2 and r2 are given in Eq. (15). Applying the differential quadrature rule to Eqs. (14)
and (18) and invoking the boundary conditions at the two ends yields a set of algebraic equations.
The resultant non-linear eigenvalue problem is solved through an iterative scheme [14]. It is

found that in all computed cases not more than three iterations are needed to acquire convergent
eigenvalues and eigenvectors.

4. Results and discussion

The convergence of the newly developed differential quadrature method is examined first. The
first five linear natural frequencies of a simply supported beam are obtained and displayed in
Table 1. For the fundamental frequency oL; excellent agreement with the exact value is reached
when N is increased to 15. The five frequencies are all in excellent agreement with their exact
values when N is increased to 50. Large numbers of knots, N ¼ 200 or 300, say, have also been
used to demonstrate the stability of the method. It is seen that the differential quadrature based on
the spline functions is very stable in comparison with the conventional DQM whose grid number
is usually restricted to below 30.
Tables 2–4 show the variation of the non-linear frequency ratio o=oL with amplitude of

vibration a=r; for three kinds of boundary conditions. In Table 2, the results of non-linear
frequency ratio o=oL for a simply supported beam are set out and compared with the exact
solution [18], conventional DQ results [14] and FEM results [10]. The present results are in
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Table 1

Convergence study: the first five linear natural frequencies of simply supported beams

N Mode sequence

1 2 3 4 5

6 9.8693 39.2265 84.3757 133.4133 171.3206

8 9.8689 39.3957 87.4887 149.4603 215.7533

10 9.8691 39.4395 88.2796 154.4341 233.0186

15 9.8695 39.4683 88.7045 157.1905 243.8744

20 9.8695 39.4747 88.7833 157.6662 245.7799

30 9.8696 39.4776 88.8167 157.8589 246.5308

40 9.8696 39.4781 88.8231 157.8952 246.6696

50 9.8696 39.4783 88.8250 157.9058 246.7101

100 9.8696 39.4784 88.8263 157.9131 246.7381

200 9.8696 39.4784 88.8264 157.9136 246.7400

300 9.8696 39.4784 88.8264 157.9137 246.7401

Exact [17] 9.8696 39.4784 88.8264 157.9137 246.7401

Q. Guo, H. Zhong / Journal of Sound and Vibration 269 (2004) 413–420 417



excellent agreement with the exact solutions. Tables 3 and 4 present results for beams with two
ends clamped and beams with one end simply supported and the other end clamped. The present
results and those of other methods are also in very good agreement, further verifying the
effectiveness of the present method.
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Table 2

Ratio of the non-linear frequency to the linear frequency (o=oL) for simply supported beams

a=r Exact [18] Present DQ [14] FEM [10]

0.1 1.0009 1.0009 1.0010 1.0009

0.2 1.0037 1.0037 1.0043 1.0037

0.4 1.0149 1.0149 1.0170 1.0148

0.6 1.0332 1.0332 1.0384 1.0339

0.8 1.0583 1.0583 1.0673 1.0578

1.0 1.0897 1.0897 1.1030 1.0889

1.5 1.1924 1.1924 1.2045 1.1902

2.0 1.3229 1.3229 1.3170 1.3022

Table 3

Ratio of the non-linear frequency to the linear frequency (o=oL) for clamped beam

a=r GFEM [13] Present DQ [14] FEM [10] ASM [7]

0.1 1.0003 1.0003 1.0003 1.0003 1.0003

0.2 1.0012 1.0012 1.0011 1.0012 1.0012

0.4 1.0048 1.0048 1.0044 1.0048 1.0048

0.6 1.0107 1.0108 1.0100 1.0107 1.0107

0.8 1.0190 1.0190 1.0178 1.0190 1.0190

1.0 1.0295 1.0296 1.0278 1.0295 1.0296

1.5 1.0650 1.0652 1.0628 1.0650 1.0653

2.0 1.1127 1.1129 1.1119 1.1127 1.1135

Table 4

Ratio of the non-linear frequency to the linear frequency (o=oL) for beams with one end simply supported the other

end clamped

a=r GFEM [13] Present FEM [10] ASM [7]

0.1 1.0006 1.0006 1.0006 1.0006

0.2 1.0026 1.0024 1.0026 1.0026

0.4 1.0106 1.0097 1.0106 1.0106

0.6 1.0237 1.0218 1.0237 1.0238

0.8 1.0416 1.0383 1.0416 1.0418

1.0 1.0641 1.0592 1.0641 1.0647

1.5 1.1378 1.1284 1.1378 1.1404

2.0 1.2318 1.2179 1.2319 1.2385
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5. Conclusions

Based on sextic cardinal spline functions, a spline-based differential quadrature method is
developed and successfully applied to the solution of higher order non-linear differential
equations. In the analysis of the non-linear vibrations of beams, the computed results are found to
be in excellent agreement with those of the exact solutions and FEM results, indicating that the
present method is effective. The spline-based differential quadrature has been shown to be very
stable; it therefore can be counted on to deal with other problems in addition to the non-linear
vibration of beams. The present work also demonstrates the equal usefulness of even-order spline
functions in practice.
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